Editing Switching regulator

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision Your text
Line 73: Line 73:
 
* [http://www.national.com/onlineseminar/2001/bpease/switching_controllers.html National: "Designing DC-DC Power Supplies Using High Performance Switching Controllers"]
 
* [http://www.national.com/onlineseminar/2001/bpease/switching_controllers.html National: "Designing DC-DC Power Supplies Using High Performance Switching Controllers"]
 
* "High-voltage, low-noise dc/dc converters" http://www.edn.com/article/CA6582859.html?spacedesc=readersChoice and http://www.edn.com/blog/1700000170/post/440031844.html : has nice photos of dead-bug solid-copper-plane wiring style.
 
* "High-voltage, low-noise dc/dc converters" http://www.edn.com/article/CA6582859.html?spacedesc=readersChoice and http://www.edn.com/blog/1700000170/post/440031844.html : has nice photos of dead-bug solid-copper-plane wiring style.
* [http://www.ti.com/lit/wp/snva575/snva575.pdf "Comparing Topologies and the (Design) Rules of the Game"] by Sanjaya Maniktala 2002 ... emphasizes "r", the ripple factor, the ratio of the ripple in the inductor to the average current in the inductor, which applies to practically every SMPS topology. It describes "The formal design procedure for any converter design".
+
* [http://www.national.com/nationaledge/mar03/article.html "Comparing Topologies and the (Design) Rules of the Game"] by Sanjaya Maniktala 2002 ... emphasizes "r", the ripple factor, the ratio of the ripple in the inductor to the average current in the inductor, which applies to practically every SMPS topology. It describes "The formal design procedure for any converter design".
 
* [http://www.dos4ever.com/battery/battery.html "An Electronic 90V Plate/Anode Battery: A "power"-inverter which emulates the 90V plate/anode battery for vintage battery tube receivers."] (battery powered) a web-log by Ronald Dekker. A very well documented series describing the entire process from the original idea. It seems that everyone who designs a switching regulator hits several unexpected problems, and this description does not shirk from describing the particular unexpected problems seen here.
 
* [http://www.dos4ever.com/battery/battery.html "An Electronic 90V Plate/Anode Battery: A "power"-inverter which emulates the 90V plate/anode battery for vintage battery tube receivers."] (battery powered) a web-log by Ronald Dekker. A very well documented series describing the entire process from the original idea. It seems that everyone who designs a switching regulator hits several unexpected problems, and this description does not shirk from describing the particular unexpected problems seen here.
 
* Flemming Frandsen made a design (based on Bob Blick) that takes noisy car power (8 to 16 volts) and converts to clean, regulated 12 V power. (Its SEPIC topology can convert up and down). A shutdown circuit turns it off when you take the key out of your car.[http://dren.dk/carpower.html]
 
* Flemming Frandsen made a design (based on Bob Blick) that takes noisy car power (8 to 16 volts) and converts to clean, regulated 12 V power. (Its SEPIC topology can convert up and down). A shutdown circuit turns it off when you take the key out of your car.[http://dren.dk/carpower.html]

Please note that all contributions to OpenCircuits may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see OpenCircuits:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)